
Agile in
FDA-Regulated
Environments

Agile in FDA-Regulated Environments 1

User Needs

Sprint #4

Design Input

Design Process

Validation Medical Device

Design OutputVeri�cation

Review Review Veri�cation
Validation

User Needs

Sprint #1

Sprint #2

Sprint # N

Sprint #3

Agile and the FDA
At its core, Agile is a set of concepts and beliefs that
stress flexibility and shared responsibility over rigid rules
and formal processes. Agile teams welcome change
to product requirements throughout the development
cycle, with all team members working together to deliver
a high quality product.

In comparison, the FDA requires concrete documentation
to prove that processes were followed, features

validated, issues addressed, and risks mitigated.
Regulations such as FDA’s Quality System Regulation

(QSR), and standards such as ISO 13485, provide
manufacturers of finished medical devices with
a framework of basic requirements to use
in establishing a quality management system.

So, can Agile be used in an FDA-regulated
environment? Yes. Despite the apparent differences,

 it is possible to successfully adopt Agile practices
in regulated environments if the transformation

is treated with insight and caution.

A report by the Standish Group found that 45 percent
of code developed using Waterfall is never actually
used. Add in the 19 percent reported as “rarely” used,
and that’s over half of a team’s programming time and
effort wasted. Then, add in the time spent validating and
documenting that code, and you begin to see why Agile
is gaining in popularity.

Why Agile?
Agile development methodologies improve the economics of product development
by reducing costly and unnecessary project overhead. A major advantage that Agile
has over Waterfall is the reduction in wasted time and effort that Waterfall developers
spend designing or documenting functionality that is never implemented or that
changes before implementation.

Average Percent of Delivered Functionality
Actually Used with Waterfall Development:

We assume you have a basic knowledge of FDA
requirements, as well as any other regulations for
your industry. If you need an overview of the FDA’s
regulations, we recommend Seapine’s “How to Have
a Painless FDA Audit” white paper.

Waterfall vs. Agile

Never: 45%

Rarely: 19%

Sometimes: 16%

Often: 13%
Always 7%

Figure: In Waterfall, an error in the Validation stage can kick the project back
to square one. In Agile, Validation happens after each sprint.

SOURCE: Chaos Report v3, Standish Group

http://www.seapine.com/wp.php?paper=49&name=How_to_Have_a_Painless_FDA_Audit
http://www.seapine.com/wp.php?paper=49&name=How_to_Have_a_Painless_FDA_Audit

Agile in FDA-Regulated Environments 2

Complexity Drivers
The issue of complexity is one area where the values
of Agile and the FDA clearly align, with both striving
to keep complexity to a minimum. The FDA realizes that
greater complexity leads to greater risk. Agile reduces
the amount of wasted project work, which subsequently
reduces complexity and allows the team to focus on
delivering a quality product.

Several factors make projects more complex:

• Size

• Location

• Requirement density and volatility

• Architecture

Agile methodologies address these complexity drivers
in several ways. First, Agile involves less hand-over
documentation because requirements that are not in
the final product are not included and, since design
is postponed until implementation, there are no design

changes, which reduces project size. Second, triaging
active requirements addresses the amount of functionality
that must be delivered. Finally, a smaller and more
straightforward architecture, supported by refactoring
techniques, reduces the footprint of the system.

Requirements and Agile
Agile methodologies tend to be sparse on
documentation because of the focus on working
software in place of extensive documentation. The
FDA, however, requires evidence of design control,
or how the requirements set has evolved during the
development of the product, risk mitigation, and
adherence to a Quality Management System (QMS).
This difference in managing product requirements
would appear to be a hurdle to FDA compliance as
a team adopts Agile practices.

Look further into FDA guidance though, and you’ll find
this from the Regulatory Information Guidance:

“Software requirements are typically stated in functional
terms and are defined, refined, and updated as
a development project progresses.”

Because of the unpredictable nature of requirements,
Agile is actually superior to Waterfall when it comes
to managing requirements and their associated
changes.

The typical Waterfall process involves a large amount
of time developing requirements on the front-end
of a project, which adds overhead in managing those
requirements and their changes throughout the project
lifecycle.

Agile design is done Just In Time (JIT), at the last possible
moment before the requirement is implemented. Agile
and JIT lead to less wasted time developing requirements
that will not make it into the final product, and less
overhead in managing requirements and associated
change requests and design rework. This closely
aligns with FDA guidance by reducing the amount

Software requirements are typically stated in functional
terms and are defined, refined, and updated as a development
project progresses.”

“

Need an overview of Agile, download our
Exploring Agile: The Seapine Agile Expedition eBook.

Many industry professionals think that FDA regulations
require Waterfall. Although untrue, this misconception
often prevents companies working in regulated environments
from even considering Agile practices.

The truth is the FDA doesn’t mandate a specific development
methodology as long as you produce the required artifacts
and can prove the device is safe and effective, meets all
design requirements, and satisfies user needs. The FDA
publication “Design Control Guidance for Medical
Device Manufacturers” outlines this in the section on
Concurrent Engineering.

In this paper, we explore the areas that Agile methodologies
can be used to effectively increase software development
agility while continuing to meet FDA regulations. While
we look specifically at medical device development, the
information we share can be applied to most regulated
environments.

http://www.fda.gov/downloads/RegulatoryInformation/Guidances/ucm126955.pdf
http://www.seapine.com/exploreagile/
http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm070627.htm
http://www.fda.gov/medicaldevices/deviceregulationandguidance/guidancedocuments/ucm070627.htm

Agile in FDA-Regulated Environments 3

of documentation to only those requirements and
changes that are actually in the shipping product.

In addition to improved efficiency and FDA alignment,
JIT design improves product quality. The best time
to perform design is when the greatest possible amount
of information is known, which is as late as possible
in the project lifecycle. This allows for a better and less
volatile design and better-informed decision making,
which should produce fewer defects.

In an Agile process, you start with an outline of what
the product needs to be able to do. From that outline
of requirements, user stories are created, breaking down
the requirements into more manageable components
and sub-components.

Agile user stories describe the functionality from
a customer perspective--something they need to do.
User stories are implemented during the sprints, and are
written in this format:

As a <type of user>, I want to <goal> so that <reason>.

Risk Management Techniques
Risk and requirements go hand-in-hand for medical device
manufacturers, and risk management is a key activity
in regulated environments. Risk management in an Agile
environment is a little different than it is in Waterfall,
although the same steps are still followed.

According to the FDA, the major steps for an acceptable
risk management model include:

1. Risk analysis
2. Risk evaluation
3. Risk control
4. Evaluation of residual risk
5. Post-release surveillance

When adopting Agile in a regulated environment, the
risk management steps most affected are risk analysis,
control, and evaluation. You should perform these steps in
each sprint, and maintain a backlog of requirements with
associated risk scores for each. This score is then used in
evaluating and selecting requirements for the next sprint.

User stories should follow the INVEST principal:

Independent

Negotiable

Valuable

Estimable

Small

Testable

They should also contain the three Cs:

Card (the user story)

Conversation (what is expected)

Confirmation (the acceptance criteria)

The relationship between the original requirement
and the derived user story must be documented and
maintained for traceability.

Verification and Validation
One of Agile’s strengths is that it is people-oriented
instead of process-oriented. As discussed, the FDA requires
documentation that shows you have a good quality-
and safety-oriented process in place. Meeting those
expectations involves the same basic practices, whether
the product development lifecycle is called Waterfall
or Agile. The advantage of Agile is that it generates less
process and documentation overhead, because you’re
only designing, building, and testing features that will be
in the final product. You’re also designing, building, and
testing at the last possible moment, so there is less rework
when things change.

The first step in any validation and verification process
is to establish how the software will be validated, including
the procedures you will use for validation and verification.
Where your design and development plans specify what will
be validated, your procedures should identify validation
actions or sequences of actions.

After you have defined your validation procedures, you
must document that the process was followed. This involves

Agile in FDA-Regulated Environments 4

the same deliverables that Waterfall would produce: work
plans, requirement specifications, design documents,
test cases, test plans, and test results. You must provide
objective evidence that the requirements are satisfied.
Agile is not an excuse to eliminate documentation. However,
in Agile, these documents can be modified throughout
the project.

Software Validation Planning
Established design and development plans should include
a specific outline for how the software validation process
will be controlled and executed. The software validation
plan defines what the software validation effort will
accomplish. All validation planning is documented in the
plan, with details of the plan evolving throughout the
project just as requirements may evolve. The validation
plan is a significant tool in your quality management system.

The software validation plan usually describes the scope,
approach, resources, and schedules of the development
process, as well as the types and extent of activities, tasks,
and work items. In regulated environments, product risk
management is a crucial piece of the software validation
plan.

The plan also identifies required tasks and procedures
based on the software lifecycle model in use. Specific tasks
for each activity are usually defined in the plan, including
procedures, inputs, outputs, acceptance criteria, and
required personnel and resources.

Agile software validation plans and associated tasks
should describe your plans for creating user stories from
requirements, developing user acceptance criteria, and
selecting user stories for iterations. The FDA expects that
your efforts will be focused on safety-related functionality
and architecture.

Agile plans should also define the length of iterations,
as well as the development practices that will be used (e.g.,
test-driven development, continuous integration, pair
programming, feature-driven programming). Your validation
plan should also describe your plans for refactoring, stand-up
meetings, sprint reviews, retrospectives, and the charts you
will use to visualize progress (e.g., burn down, burn up, velocity).

Independence in Review
The FDA expects independence when reviewing, verifying,
and validating the product. This can be a potential pitfall
in an Agile environment, depending on which Agile
methodology you use. In an ideal Agile world, everyone
does everything; developers would also do the testing, for
example.

The FDA, however, requires that testing be performed
by groups outside of development that are not directly
responsible for the item being reviewed. Your company
needs to define a strategy that ensures requirements with
the highest patient risk are independently reviewed.

NOTE: Documentation can be viewed from two perspectives: project
documentation (describes how you are creating the product) and product
documentation (describes how the end result works). An Agile process
generally creates project documentation, but the FDA expects product
documentation. Your development tools should make the generation
of product documentation as seamless as possible.

Validation After Change
In a regulated environment, the software must be
validated after every change to ensure it is still fit for use
and accomplishes its intended purpose. Automated
regression testing and real-time traceability are critical
components for validating changes efficiently throughout
the product development cycle. They are also critical
components for successful Agile adoption.

Defect Prevention
No one wants to release defective code but, when
it comes to medical devices, defect prevention is critical.
Medical device developers must have an extremely low
fault tolerance due to the potential danger to people’s
lives if there are bugs in the final product. Fortunately,
Agile promotes quality and reduces defects.

Coding
Sometimes requirements can be ambiguous because
English is inherently imprecise. Code, on the other hand,
is far less ambiguous than written requirements. For this
reason, code can function as a communication tool, with
unit tests demonstrating what the correct behavior of the
code should be.

There are three Agile practices that are particularly effective
in reducing the number of bugs: pair programming,
test-driven development, and code refactoring.

Pair programming involves two developers working in
tandem, literally side by side. One developer acts as the
“driver,” coding, typing, and focusing on the task at hand.
The other developer serves as the “observer,” watching
and reviewing the driver’s work while considering
alternative approaches.

When pair programming is used, the paired developers
often discover more solutions to coding issues than
they would have working separately. There is also peer
pressure to follow standards and not take shortcuts. This
type of static testing, with two sets of eyes reviewing
code, helps to catch defects earlier, when they require
less effort to fix.

In 2000, Alistair Cockburn and Laurie Williams published
the results of a study on pair programming in their paper,
“The Costs and Benefits of Pair Programming.” They found
that pair programming reduces defects by up to 70 percent.

Automated testing pays off quickly when a change
needs to be validated. If code was developed using
test-driven development, there should already be
a number of tests in place to verify that existing
functionality continues to work as expected. Continuous
integration and automated smoke tests also help
with validation after a change because the failure
is immediately apparent if changes break other code.

When using an Agile methodology, real-time traceability
is the key to using traceability and impact analysis
to drive your validation process. Because Agile
intrinsically decreases the amount of documentation
generated by any project, it is important to make
sure your application lifecycle management tools
automatically generate traceability documentation.

Impact analysis is necessary to determine the scope
of a change and identify any impacted requirements.
As requirements change and new code is written,
everything linked to those artifacts must be
 re-validated; this is especially important if the change
is connected to a safety-related requirement. Real-time
traceability means that test cases, defects, and other
project artifacts associated with those changed
requirements can immediately be identified and
flagged as needing attention. This streamlines the
process of managing change, improving the team’s
agility and boosting product quality.

http://dl.acm.org/citation.cfm?id=377531

Agile in FDA-Regulated Environments 6

Refactoring is the process of simplifying code by improving
the design, without changing its functionality. It keeps
code from becoming brittle, stale legacy code. It also leads
to a better design because you continuously ponder how
to improve the code instead of just figuring out how to make
it work.

When should you refactor? First, it is only safe to refactor
if you have unit tests to verify accepted behavior. Then it’s
a matter of looking for “code smells,” or symptoms that
indicate a deeper problem. This may mean that something
is wrong with the code, so code smells should always be
investigated.

Be sure to refactor in small, controlled steps and make
refactoring a constant part of your development cycle.
After every refactor, you will need to validate the code,
which is where unit tests can improve efficiency and
help developers identify defects right away. Tests can
be refactored too, but use caution because you cannot
validate that tests have been refactored correctly.

To learn more about TDD, check out Seapine’s
TDD 101 Webinar series.

The FDA also sees the value in this kind of static testing,
and has begun pushing for more of it in the Validation
and Verification process. To help pair programming meet
FDA expectations, you should introduce some form
of documentation into the process. Typically, observers
compile this documentation as they’re watching and
reviewing the drivers’ work. This adds a bit of overhead
to pair programming, but in the end you’ll be better able
to prove FDA compliance in the event of an audit.

Test-driven development (TDD) is a disciplined coding
practice that has several benefits for improving quality.
For example, TDD often results in a better design because
of frequent refactoring and built-in unit tests for regression
testing. TDD also results in a smaller footprint of code
because there is less dead, untested code, and all code
is unit-testable code.

The TDD process consists of four phases:

1. Write a test that fails.
2. Change the code so all tests pass.
3. Verify that all tests pass.
4. Refactor as needed, to get clean consistent design.

In a 2008 study, “Realizing Quality Improvement through
Test Driven Development: Results and Experiences of Four
Industrial Teams,” case studies were conducted with three
development teams at Microsoft and one at IBM, all
of which had adopted TDD. The results were remarkable:
the IBM team saw a 40 percent drop in defect density, while
the Microsoft teams saw drops in defect density from 60
to 90 percent.

Testing
Testing is performed as part of each iteration throughout
an Agile project, instead of in its own phase at the end
of the project. Again, the idea is that the earlier defects
are found, the easier they are to fix.

User acceptance testing (UAT) seeks to verify that
working software fulfills customer requirements. UAT
acts as a final verification of the required business
function and proper functioning of the system, emulating
real-world usage conditions on behalf of the customer.
If the software works as intended and without issues
during normal use, you can reasonably extrapolate the
same level of stability in production.

Unit tests attempt to verify that a specific piece of code
behaves correctly, and that nothing was broken by the
latest changes. As you build up unit tests over time,
they become a built-in set of regression tests at the
code level that help you find issues in existing code
before changes get to the testing phase.

System tests verify the requirements at the highest
level.

Integration tests exercise internal interfaces that are
inaccessible by system tests, and reduce the complexity
and effort of testing a large system.

Some common code smells include:

• Duplicated code

• Long method

• Large class

• Feature envy

• Lazy class/Freeloader

http://en.wikipedia.org/wiki/Code_smell
http://www.seapine.com/tddseries/
http://dx.doi.org/10.1007/s10664-008-9062-z

Agile in FDA-Regulated Environments 7

Test Planning
Testing is the critical activity that ensures requirements
have been implemented correctly, but it’s just as
important to prove to the FDA that you’ve run the
tests that verify and validate each requirement. An
integrated toolset will manage your test cases and test
results, automatically maintaining and reporting on
the links between requirements and tests, along with
comprehensive historical proof. Teams developing
higher risk products require strong object evidence,
which your tool should easily enforce and provide.

Issue and Task Tracking
Although Agile can help reduce the amount of defects,
it won’t completely eliminate them. You will still need
a way to track issues and other tasks. Your software
tool should be flexible enough to support your Agile
process, as well as provide traceability from defects
back to tests and requirements.

Automated Testing
Because testing is performed throughout an Agile
project, it’s not feasible to do a full manual regression
test at the end of each iteration. A good automated
testing tool will alleviate this pain by performing
regression testing automatically, and improve test
coverage in each iteration by allowing you to add
automated testing for the new functionality.

Continuous Integration
Continuous integration involves integrating all developer
changes early and often. Ideally, the continuous
integration tool will compile the code and run all unit
tests for each committed change. This way, integration
issues and bugs are found earlier in the process, when
they are less expensive to fix.

Facilitating Agile with Software Tools
Because Agile generates less documentation, it can
be challenging to maintain the required records and
traceability matrices needed to satisfy FDA regulations.
Fortunately, software tools can help with this and,
in some cases, can automatically generate the required
documentation.

Some integrated software tools are flexible and configurable
enough to create a framework to facilitate Agile development
and good quality processes. These tools make tracking
and linking requirements, tests, defects and risk easier
and less time-consuming.

The best tools allow you to perform issue tracking,
requirements management, and testing in the same
interface with a shared data and security model. These
tools facilitate and automate traceability, as well as
lessen your reliance on manual updates when something
changes. As artifacts transition through their lifecycles,
reusable data and content minimizes human errors and
ensures greater visibility.

Requirements and Risk Management
A software tool can help track changing requirements,
risk artifacts, and other associated work items. A good
tool will automatically track requirement changes,
track requirement to user story evolution, calculate risk
values, and generate traceability matrices to record risk
control measures, requirements, architecture and design
elements, and verification and validation. With this kind
of tool in place, your team can focus on building high-quality
software and the tool will automatically provide the
documentation when it is needed.

Agile in FDA-Regulated Environments 8

Elements of an Ideal Solution
When selecting your tools, you should consider the
following capabilities:

Automation
A good tool uses configurable notifications and
escalations, based on your business rules, to ensure
items don’t fall through the cracks. It reduces copying
and pasting errors, minimizes the need to manually
updating other systems or spreadsheets, and ensures
the right people are being notified at the right time.

Security
No two businesses are the same, so a highly
configurable security model to manage user
permissions is necessary. The more complex your
products and dispersed your teams become in the
future, the more you’ll need a security model that
grows with your business. If you outsource or work
with third-party suppliers, you need the added
assurance that your intellectual capital is protected.

Traceability
To help ensure visibility for projects, teams, and
business units, the tool must include linking capabilities.
End-to-end traceability not only ensures compliance,
but also provides users with further impact and gap
analysis. This helps with the test coverage, reporting,
and readiness of your product.

Reporting
Managing and tracing of artifacts is useless if you
cannot get the right information for submissions
or audits. Efficient reporting provides management
and auditors with the information they need to make
well-informed decisions.

Conclusion
Because of its emphasis on working software and
incremental development cycles, which reduce requirements
and software changes, Agile can be an excellent way
for companies in regulated industries to reduce risk
while bringing high-quality products to market faster
than their competitors. While the reduced amount of
documentation may seem problematic from a traceability
standpoint, integrated software tools can make up for this
by automatically tracking changes, linking artifacts, and
generating the reports needed to meet the requirements
of the FDA and other regulators.

About Seapine for Life Sciences
Founded in 1995, Seapine Software is based in Mason, Ohio, with
sales and support offices located in Europe, Asia-Pacific, and Africa.
Hundreds of leading medical device, pharmaceutical, biotechnology, and
clinical research organizations rely on Seapine to streamline their core
development processes, drive innovation, and gain a competitive edge.

Learn more at life-sciences.seapine.com.

http://life-sciences.seapine.com

